

CSE 150A-250A AI: Probabilistic Models

Lecture 10

Fall 2025

Trevor Bonjour
Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

Agenda

Review

EM Application

Hidden Markov Models

Review

ML estimation for complete data

- Notation

Nodes X_1, X_2, \dots, X_n

Examples $t = 1, 2, \dots, T$

Complete data $\{(x_{1t}, x_{2t}, \dots, x_{nt})\}_{t=1}^T$

- ML estimates for CPTs

root
nodes

$$P_{\text{ML}}(X_i = x) = \frac{\text{count}(X_i = x)}{T}$$

$$= \frac{1}{T} \sum_t I(x_{it}, x)$$

nodes
with
parents

$$P_{\text{ML}}(X_i = x | \text{pa}_i = \pi) = \frac{\text{count}(X_i = x, \text{pa}_i = \pi)}{\text{count}(\text{pa}_i = \pi)}$$

$$= \frac{\sum_t I(x_{it}, x) I(\text{pa}_{it}, \pi)}{\sum_t I(\text{pa}_{it}, \pi)}$$

ML estimation for incomplete data

- Notation

Nodes X_1, X_2, \dots, X_n

Examples $t = 1, 2, \dots, T$

Visible nodes $V_t = v_t$ for t^{th} example

- EM algorithm

Initialize CPTs to nonzero values.

Repeat until convergence:

E-step — compute posterior probabilities.

M-step — update CPTs:

$$\begin{array}{lll} \text{root} & P(X_i=x) & \leftarrow \frac{1}{T} \sum_t P(X_i=x|V_t=v_t) \\ \text{nodes} & & \\ \hline \end{array}$$

$$\begin{array}{lll} \text{nodes with} & P(X_i=x|\text{pa}_i=\pi) & \leftarrow \frac{\sum_t P(X_i=x, \text{pa}_i=\pi|V_t=v_t)}{\sum_t P(\text{pa}_i=\pi|V_t=v_t)} \\ \text{parents} & & \\ \hline \end{array}$$

Complete versus incomplete data

- Complete data

root
nodes

$$P_{\text{ML}}(X_i=x) = \frac{1}{T} \sum_t I(x_{it}, x)$$

nodes
with
parents

$$P_{\text{ML}}(X_i=x | \text{pa}_i=\pi) = \frac{\sum_t I(x_{it}, x) I(\text{pa}_{it}, \pi)}{\sum_t I(\text{pa}_{it}, \pi)}$$

- Incomplete data

root
nodes

$$P(X_i=x) \leftarrow \frac{1}{T} \sum_t P(X_i=x | V_t=v_t)$$

nodes
with
parents

$$P(X_i=x | \text{pa}_i=\pi) \leftarrow \frac{\sum_{t=1}^T P(X_i=x, \text{pa}_i=\pi | V_t=v_t)}{\sum_{t=1}^T P(\text{pa}_i=\pi | V_t=v_t)}$$

- **No learning rate**

The updates do not require the tuning of a learning rate ($\eta > 0$), as in purely gradient-based methods.

- **Monotonic convergence**

Changes to CPTs from the EM updates always increase the incomplete-data log-likelihood $\mathcal{L} = \sum_t \log P(V_t = v_t)$.

EM Example

Incomplete data $\{(a_t, c_t)\}_{t=1}^T$
A and C are observed.
B is hidden.

- E-step (Inference)

$$P(b|a_t, c_t) = \frac{P(c_t|b) P(b|a_t)}{\sum_{b'} P(c_t|b') P(b'|a_t)}$$

- M-step (Learning)

$$P(a) = \frac{1}{T} \text{count}(A=a)$$

$$P(b|a) \leftarrow \frac{\sum_t I(a, a_t) P(b|a_t, c_t)}{\sum_t I(a, a_t)}$$

$$P(c|b) \leftarrow \frac{\sum_t I(c, c_t) P(b|a_t, c_t)}{\sum_t P(b|a_t, c_t)}$$

EM Application

Application

- Statistical language modeling

Let w_ℓ denote the ℓ^{th} word in a corpus of text.

How to model $P(w_1, w_2, \dots, w_L)$?

- Markov models

model	$P(w_1, w_2, \dots, w_L)$	ML estimate	DAG
unigram	$\prod_\ell P_1(w_\ell)$	$P_1(w) = \frac{\text{count}(w)}{L}$	$w_1 \quad w_2 \quad \dots \quad w_L$
bigram	$\prod_\ell P_2(w_\ell w_{\ell-1})$	$P_2(w' w) = \frac{\text{count}(w \rightarrow w')}{\text{count}(w)}$	$w_1 \rightarrow w_2 \rightarrow \dots \rightarrow w_L$
trigram	$\prod_\ell P_3(w_\ell w_{\ell-1}, w_{\ell-2})$	\vdots	\vdots

- Evaluating n -gram models

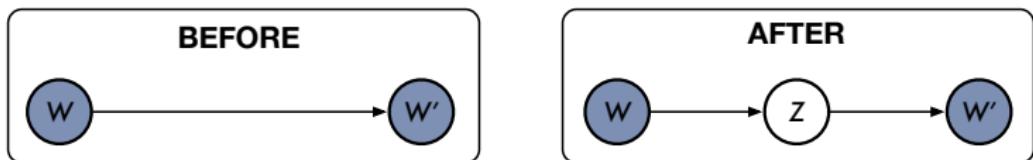
Train on corpus $\mathcal{A} \implies P_1(\mathcal{A}) \leq P_2(\mathcal{A}) \leq P_3(\mathcal{A}) \dots$

Test on corpus $\mathcal{B} \implies P_2(\mathcal{B}) = 0$ if \mathcal{B} has unseen bigrams.

Word clustering

- Alternative to bigram model

Insert a hidden node $Z \in \{1, 2, \dots, C\}$ between the previous and next words $W, W' \in \{1, 2, \dots, V\}$.



Words W and W' are observed (as before).

The node Z is a latent variable to detect word clusters.

- Conditional probability tables

$P(z|w)$ is the probability that word w is mapped into cluster z .

$P(w'|z)$ is the probability that word w' follows any word in cluster z .

Computing $P(w'|w)$

- Inference

$$P(w'|w) = \sum_z P(w', z|w) \quad \boxed{\text{marginalization}}$$

$$= \sum_z P(w'|z, w) P(z|w) \quad \boxed{\text{product rule}}$$

$$= \sum_z P(w'|z) P(z|w) \quad \boxed{\text{conditional independence}}$$

- Matrix factorization

The above expresses the matrix $\overbrace{P(w'|w)}^{V \times V}$ as the product of the two smaller matrices $\overbrace{P(w'|z)}^{V \times C}$ and $\overbrace{P(z|w)}^{C \times V}$.

Model complexity

- Parameter count

size of vocabulary	V	
number of clusters	C	
parameters in cluster model	$2CV$	$P(w' z), P(z w)$
parameters in bigram model	V^2	$P(w' w)$
parameters in unigram model	V	$P(w)$

- Compact representations of complex worlds

Setting $C=1$, we recover the unigram model.

Setting $C=V$, we recover the bigram model.

In between, we are exploring a range of different models.

EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step – Inference

$$P(z|w_\ell, w_{\ell+1}) = \frac{P(w_{\ell+1}|z) P(z|w_\ell)}{\sum_{z'} P(w_{\ell+1}|z') P(z'|w_\ell)}$$

- M-step – Learning

$$P(z|w) \leftarrow \frac{\sum_\ell I(w, w_\ell) P(z|w_\ell, w_{\ell+1})}{\sum_\ell I(w, w_\ell)}$$

$$P(w'|z) \leftarrow \frac{\sum_\ell I(w', w_{\ell+1}) P(z|w_\ell, w_{\ell+1})}{\sum_\ell P(z|w_\ell, w_{\ell+1})}$$

Experimental results

- Data set

60K-word vocabulary

80M-word corpus of news articles

$\text{count}(w \rightarrow w')$ is 99% sparse.

- Model

The goal is to estimate $P(z|w)$ and $P(w'|z)$.

For $C=32$ clusters, these CPTs have 3.84M entries.

EM converges in 30 iterations.

- Results

The model has no prior knowledge of word meanings.

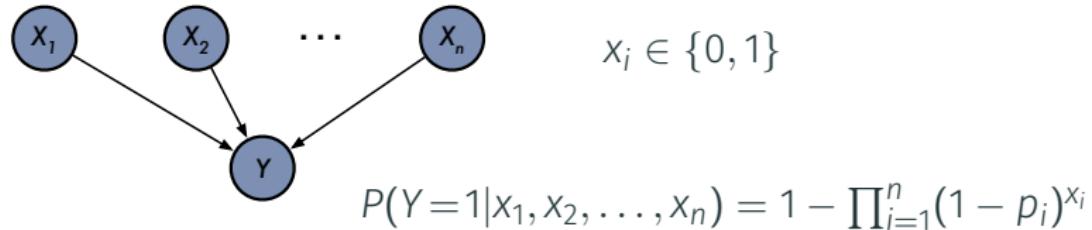
Which words does it cluster? Look at $\text{argmax}_z P(z|w)$.

Word clusters

1	as cents made make take	19	billion hundred million nineteen
2	ago day earlier Friday Monday month quarter reported said Thursday trading Tuesday Wednesday (...)	20	did ('') ('')
3	even get to	21	but called San (:>) (start-of-sentence)
4	based days down home months up work years (%)	22	bank board chairman end group members number office out part percent price prices rate sales shares use
5	those <(> <-->	23	a an another any dollar each first good her his its my old our their this
6	<(> (?)	24	long Mr. year
7	eighty fifty forty ninety seventy sixty thirty twenty <(> <)	25	business California case companies corporation dollars incorporated industry law money thousand time today war week () (unknown)
8	can could may should to will would	26	also government he it market she that there which who
9	about at just only or than &(> <)	27	A. B. C. D. E. F. G. I. L. M. N. P. R. S. T. U.
10	economic high interest much no such tax united well	28	both foreign international major many new oil other some Soviet stock these west world
11	president	29	after all among and before between by during for from in including into like of off on over since through told under until while with
12	because do how if most say so then think very what when where	30	eight fifteen five four half last next nine oh one second seven several six ten third three twelve two zero <->
13	according back expected going him plan used way	31	are be been being had has have is it's not still was were
15	don't I people they we you	32	chief exchange news public service trade
16	Bush company court department more officials police retort spokesman		
17	former the		
18	American big city federal general house military national party political state union York		

The table shows the most likely cluster assignments $\text{argmax}_z P(z|w)$ for the 300 most common tokens in the corpus.

Example : Noisy-OR

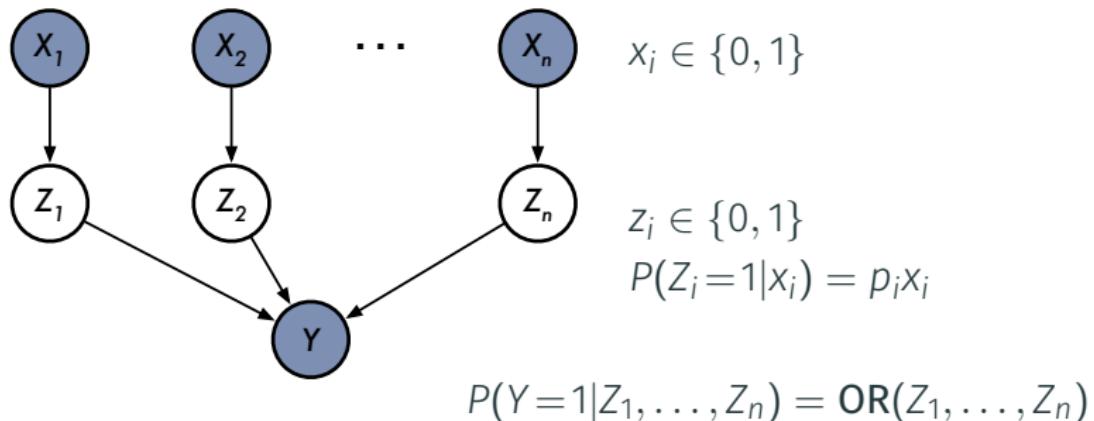


The log (conditional) likelihood is $\sum_t \log P(y_t|x_t)$.

How to estimate parameters $p_i \in [0, 1]$ that maximize this?

EM – but how? Isn't the data complete?

EM for noisy-OR



HW 5

First you will show that this model is equivalent to noisy-OR.
Then you will derive the EM updates for $p_i \in [0, 1]$.

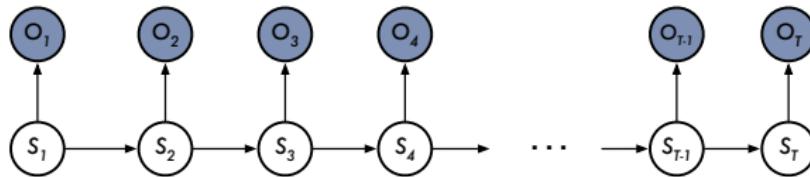
Hidden Markov Models

Markov Models (Review)

Two simplifying assumptions:

1. Finite Context
2. Position Invariance

Hidden Markov models (HMMs)



- Random variables

$S_t \in \{1, 2, \dots, n\}$ hidden state at time t

$O_t \in \{1, 2, \dots, m\}$ observation at time t

- States versus observations

Each observation O_t is a noisy, partial reflection of the true underlying (but hidden) state S_t of the world at time t .

What makes this model so useful?

Housetraining a puppy

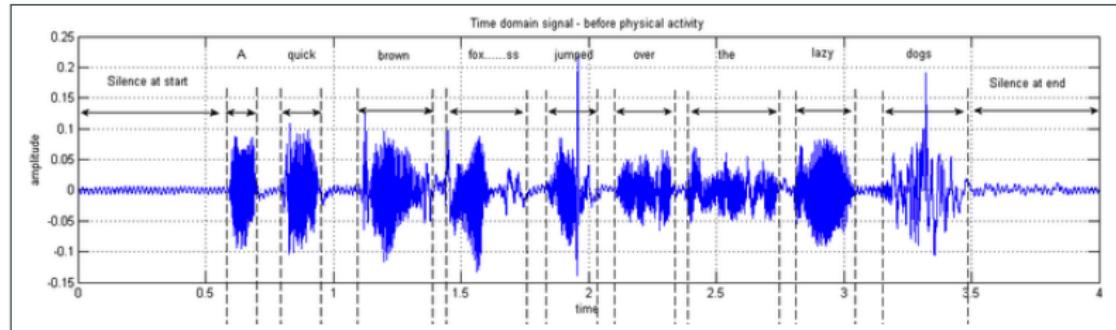
This is Bubbles.
She's an english spanador.

$O_t \in \{\text{sleeping, eating, barking, waiting by door, etc.}\}$
 $S_t \in \{\text{playful, hungry, tired, ready to burst}\}$

Does she need to go outside?

What is $P(S_t | o_1, o_2, \dots, o_t)$?

Speech recognition



O_t is the acoustic feature vector for windowed speech at time t .
 S_t is the unit of language (e.g., phoneme) being uttered at time t .

What did I just hear?

What is $\text{argmax}_{S_1, S_2, \dots, S_T} P(S_1, S_2, \dots, S_T | O_1, O_2, \dots, O_T)$?

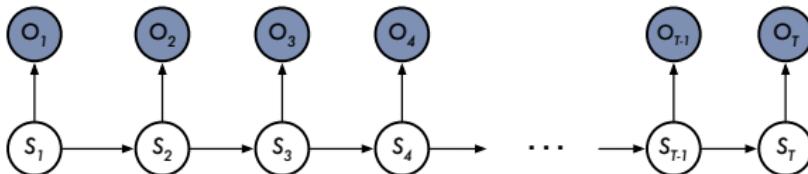
Indoor robot navigation

O_t encodes the sensor readings at time t .

S_t encodes the robot location at time t .

Location in the room: what is $P(S_t|o_1, o_2, \dots, o_t)$?

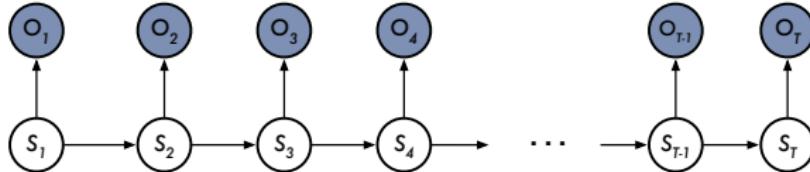
HMMs as belief networks



Q. Which of the following statements are True?

- A. $P(S_t|S_1, S_2, \dots, S_{t-1}) = P(S_t|S_{t-1})$
- B. $P(O_t|S_1, S_2, \dots, S_t) = P(O_t|S_t)$
- C. $P(S_t|S_{t-1}) = P(S_t|S_{t-1}, O_t)$
- D. A and B
- E. A, B and C

HMMs as belief networks



- Conditional independence assumptions

$$P(S_t | S_1, S_2, \dots, S_{t-1}) = P(S_t | S_{t-1})$$

$$P(O_t | S_1, S_2, \dots, S_T) = P(O_t | S_t)$$

- CPTs are shared across time

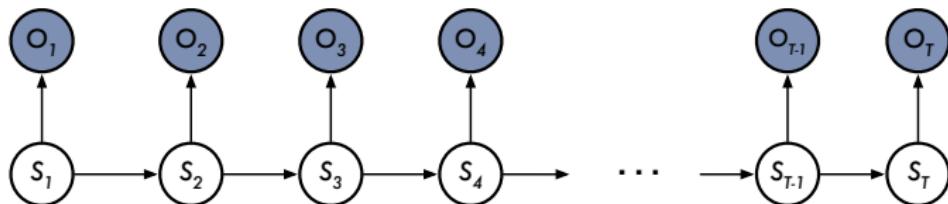
$$P(S_t = s' | S_{t-1} = s) = P(S_{t+1} = s' | S_t = s)$$

$$P(O_t = o | S_t = s) = P(O_{t+1} = o | S_{t+1} = s)$$

- Joint distribution

$$P(\underbrace{S_1, \dots, S_T}_{\vec{s}}, \underbrace{O_1, \dots, O_T}_{\vec{o}}) = P(S_1) P(O_1 | S_1) \prod_{t=2}^T \left[P(S_t | S_{t-1}) P(O_t | S_t) \right]$$

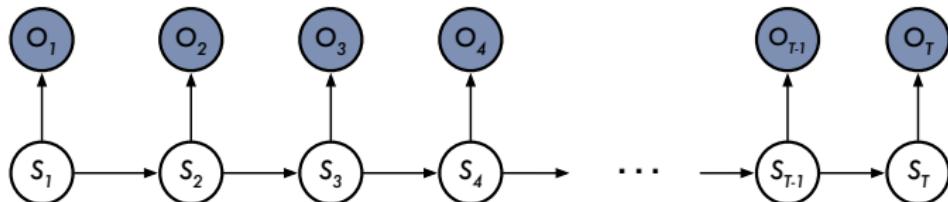
Parameters of HMMs



Q. Which of the following is NOT a parameter of the model?

- A. $P(S_t|S_{t+1})$
- B. $P(S_1)$
- C. $P(O_t|O_{t-1})$
- D. $P(O_t|S_t)$
- E. More than one of these is NOT a parameter of the model.

Parameters of HMMs



$$a_{ij} = P(S_{t+1} = j | S_t = i)$$

$n \times n$ transition matrix

$$b_{ik} = P(O_t = k | S_t = i)$$

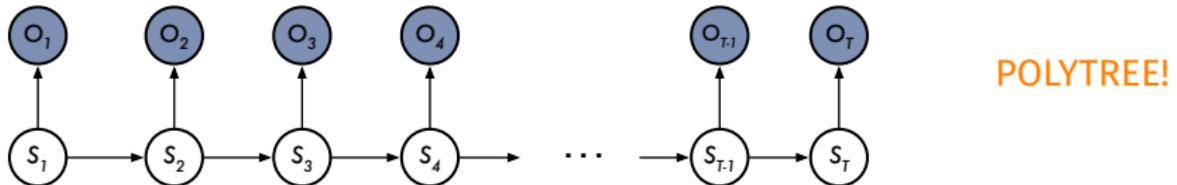
$n \times m$ emission matrix

$$\pi_i = P(S_1 = i)$$

$n \times 1$ initial state distribution

HMM is a polytree. True or False?

Key computations in HMMs¹



Inference

1. How to compute the likelihood $P(o_1, o_2, \dots, o_T)$?
2. How to compute the most likely state sequence $\text{argmax}_{\vec{s}} P(\vec{s}|\vec{o})$?
3. How to update beliefs by computing $P(s_t|o_1, o_2, \dots, o_t)$?

Learning

How to estimate parameters $\{\pi_i, a_{ij}, b_{ik}\}$ that maximize the log-likelihood of observed sequences?

¹Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition.

That's all folks!