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ML estimation for complete data

- Notation

Nodes X1, Xz, ..., Xn
Examplest=1,2,...,T
Complete data {(Xit, Xat, - - - , Xnt ) He

- ML estimates for CPTs

root count(X;=x)
p- X=X = — 7
nodes . (X =x) T

1
= ?Z/(X,'“X)
t

nodes H06=x _ )
With PML(X,-:X|pa,»:7r) = coun =5 Py =T
count(pa; =)
parents

Zt ’(XfU X) /(Pam 7T)
> l(pay, )
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ML estimation for incomplete data

- Notation

Nodes Xi, X5, ..., Xy
Examplest=1,2,...,T
Visible nodes V; =v; for t* example

- EM algorithm

Initialize CPTs to nonzero values.
Repeat until convergence:

E-step — compute posterior probabilities.
M-step — update CPTs:

root 1
P(X:=x) +— = P(Xi=x|Vi =V,
nodes (*i=x) TZ(’ Ve=wvt)
des with P(Xi=x, pa;=m|Vi=v
nodes wi P(X = x|pa, =) > P(Xi pa;=7|Vi=vt)
parents > P(paj=m|Vi=w)
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Complete versus incomplete data

- Complete data

root _ — 1 )
Hodes Pu(Xi=x) = 732 1(Xit, X)
nodes
( I(Xit, %) I(paje,m
with PyL(Xi=x|pa;=7) = %
parents ’

- Incomplete data

root o 1 ‘ |
nodes PXi=x) <«— 32 PXi=x|Vi=w)

nodes o

with POG=xlpa =) — Sl el
parents t=1 .




Key properties of EM

- No learning rate

The updates do not require the tuning of a learning
rate (p > 0), as in purely gradient-based methods.

- Monotonic convergence

Changes to CPTs from the EM updates always increase
the incomplete-data log-likelihood £ =}, log P(Vy =v1).
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EM Example

Incomplete data {(a, ¢t)}_;
. . . A and C are observed.
B is hidden.
- E-step (Inference)

_ P(ct|b) P(blay)
P(bla;, ¢r) = 5=, P(cb’) P(D[ar)

- M-step (Learning)

P(a) = %count(A:a)
P(bla) «— Ztl(avat) P(blay, ct)
>oil(a,ar)

> 1(c,ce) P(blat, ct)
B N Gl
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Application

- Statistical language modeling

Let w, denote the ¢ word in a corpus of text.

How to model P(w1, wa, ..., w)?
- Markov models
model P(wy,wa, ... wp) ML estimate DAG
unigram L1, Pi(we) Pi(w) = Cour[t(w)
bigram [T, P2(welwe—q) Py(w'|w) = %W _>_> _>
trigram | [T,P3(welwg—1, wy_2) :

- Evaluating n-gram models

Train on corpus A =
Teston corpus B =

Pi(A) < Py(A) < P3(A)...
P,(B) = 0 if B has unseen bigrams.
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Word clustering

- Alternative to bigram model

Insert a hidden node Z € {1,2...,C} between the previous and
next words W, W' € {1,2,...,V}.

BEFORE AFTER

® ® 0@

Words W and W’ are observed (as before).
The node Z is a latent variable to detect word clusters.

- Conditional probability tables

P(z|w) is the probability that word w is mapped into cluster z.
P(wz) is the probability that word w’ follows any word in

cluster z. /30



Computing P(w'|w)

@—00—@

- Inference
P(W|w) = ZP(W’,Z\W) ’marginalization‘
= ZP w'|z, w) P(z|w)
= ZP w'|z) P(z|w) ’conditional independence

- Matrix factorization

VxV

A contham
The above expresses the matrix P(w’'|w) as the product of
the two smaller matrices P(w’'|z) and P(z|w).
N—_—— N——

VxC CxV
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Model complexity

- Parameter count

size of vocabulary %

number of clusters C

parameters in cluster model 2CV P(wW'|z), P(z|w)
parameters in bigram model V2 P(W'|w)
parameters in unigram model V P(w)

- Compact representations of complex worlds

Setting C=1, we recover the unigram model.
Setting C=V, we recover the bigram model.
In between, we are exploring a range of different models.
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EM algorithm

The model is the same as our previous example.
Only the variable names have changed!

- E-step - Inference

P(Wey1|2) P(z|we)

P(z|We, Wesr) =
W) = S B 2') P2 i)

- M-step - Learning

oo 1w, we)P(z|wy, weq)

Pleiw) = S, 10w, w)
, S (W s wegq) P(z|wp, wpq)
PIvlz) = : >0 P(?\W(-Wf 1)
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Experimental results

- Data set

60K-word vocabulary
80M-word corpus of news articles
count(w — w') is 99% sparse.

- Model ‘ @ '

The goal is to estimate P(z|w) and P(w'|z).
For C=32 clusters, these CPTs have 3.84M entries.
EM converges in 30 iterations.

- Results

The model has no prior knowledge of word meanings.
Which words does it cluster? Look at argmax, P(z|w).
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Word cluste

1 |as cents made make take 19 |billion hundred million nineteen
ago day earlier Friday Monday month quarter 20 [did (") ()
2 s\:{pgrteddsaid Thursday trading Tuesday 21 |but called San (:) (start-of-sentence)
5 cvzn";:t = €0 bank board chairman end group members
22 |number office out part percent price prices rate
4 b’?sed days down home months up work years sales shares use
(%) 93 |a an another any dollar cach first good her his its
5 |those (,) (—) my old our their this
6[() (7 24 |long Mr. year
. cighty fifty forty ninety seventy sixty thirty business California case companies corporation
twenty (() (-) 25 |dollars incorporated industry law money
8 |can could may should to will would thousand time today war week ()) (unknown)
9 |about at just only or than (&) () o6 |also government he it market she that there
4 Just or J _ which who
10 | economic high interest much no such tax united | [37[A. B. C. D. E. F. G. L L. M. N. P. R. 5. T. U.
wcll. 28 both foreign international major many new oil
1 |president other some Soviet stock these west world
19 | because do how if most say so then think very after all among and before between by during for
what when where 29 |from in including into like of off on over since
13 |according back expected going him plan used way through told under until while with
15 |don’t I people they we you eight fifteen five four half last next nine oh one
6 Bush company court department more officials 30 |second seven several six ten third three twelve
! police retort spokesman two zero (-)
17 | former the 31 |are be been being had has have is it's not still
18 American big city federal general house military was were . .
national party political state union York 32 |chief exchange news public service trade

The table shows the most likely cluster assignments argmax, P(z|w)

for the 300 most common tokens in the corpus.
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‘\K /‘ x; € {0,1}

P(Y=1[X1,X2, ..., Xn) = 1= TTiL,(1 = p;)%i
The log (conditional) likelihood is >~ log P(yt|xt).

How to estimate parameters p; € [0, 1] that maximize this?

EM — but how? Isn’t the data complete?
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EM for noisy-OR

zi € {0,1}
P(Zi=1|x;) = pix;

—1|Z1,,Zn) = OR(Z‘],,ZH)

Xi € {0,1}

HW 5

First you will show that this model is equivalent to noisy-OR.
Then you will derive the EM updates for p; € [0,1].
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Hidden Markov Models




Markov Models (Review)

O—O—0—0— -~ OO
Two simplifying assumptions:

1. Finite Context

2. Position Invariance
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Hidden Markov models (HMMs)

A
- Random variables

St €{1,2,...,n} hidden state at time t
Or € {1,2,...,m} observation attimet

- States versus observations

Each observation Oy is a noisy, partial reflection of the true
underlying (but hidden) state S; of the world at time t.

What makes this model so useful?
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Housetraining a puppy

This is Bubbles.
She’s an english spanador.

O; € {sleeping, eating, barking, waiting by door, etc.}
Si € {playful, hungry, tired,ready to burst}

Does she need to go outside?
What is P(s¢|01, 0o, ..., 01)?
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Time domain signal - before physical actiily

Oy is the acoustic feature vector for windowed speech at time t.

phoneme) being uttered at time

eg.,

(

St is the unit of language

What did | just hear?
What is argmax
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Indoor robot navigation

O; encodes the sensor readings at time t.
St encodes the robot location at time t.

Location in the room: what is P(st|01,02,...,0¢)?
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HMMs as belief networks

Q. Which of the following statements are True?
A. P(St[S1,S2, -+, St—1) = P(St|St-1)

B. P(Ot|S1,S2,...,St) = P(Ot|St)
C
D

. P(5t|St—1) = P(5t|St—1, Ot)
. Aand B

m

. A BandC
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HMMs as belief networks

® ©
OO0

@ @
- Conditional independence assumptions
P(StS1, 52, - -, St—1)
P(0¢|S1, S, ..., 57)

- CPTs are shared across time

= P(St|5t_1)
P(O[St)

P(St:S/|S[,’ :S)
P(Ot=0l[St=5)
- Joint distribution

P(St 1:S/|SIZS)
P(Ot 1:O|SU" :S)

.
P(Si,...,S7,01,...,07) = P(S1)P(01]S1) H{ (St|St—1) P(O¢|Se)

t=2
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Parameters of HMMs

5388 &4

®

Q. Which of the following is NOT a parameter of the model?
. P(5¢|St11)

S1)

0¢[0¢—1)
Ot[St)

A
B. P(
C. P(
D. P(

E. More than one of these is NOT a parameter of the model.
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Parameters of HMMs

? 2

a; = P(Sty=J|St=1) ’ nxn transition matrix‘
b, = P(Or=Fk|St=1) ’nxm emission matrix‘
T = P(Si=1) ] nx1initial state distribution \
[ HMM is a polytree. True or False? ]
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Key computations in HMMs'

I I POLYTREE!

Inference

1. How to compute the likelihood P(04,0,,...,07)?

N

2. How to compute the most likely state sequence argmaxz P(5]0)?

3. How to update beliefs by computing P(st|01,02,...,0¢)?

Learning

How to estimate parameters {7, aj, bj} that maximize the
log-likelihood of observed sequences?

"Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected
applications in speech recognition. 29/30




That's all folks!
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